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Abstract. We obtain an expression for the stochastic Lagrangian as used in stochastic 
mechanics in a straightforward manner without obtaining the singular terms of Guerra’s 
approach. We then present a new derivation of the Schrodinger equation. 

1. Introduction 

In classical mechanics one usually considers the following system when discussing the 
motion of a particle of mass m under the influence of a scalar potential V (4, t )  and a 
vector potential A ( q , t )  in R’ : 

SA 
S t  
-- ( V A A ) A q  

where q denotes the particle’s position, q denotes its velocity and p = mq + A is the 
canonical momentum. The Lagrangian L and Hamiltonian H are calculated as above. 
Classical solutions of the equation of motion can be obtained by finding those q which 
minimise J Ld t  or which ensure that 

The canonical momentum p can also be realised as V S  where S ( = 
the Hamilton-Jacobi equation 

Ldt)  satisfies 

ss 1 
F r  2m 

_ -  = - ( V S  - A ) .  (VS - A )  + I/. 

We have suppressed the fundamental constants of electric charge and the speed of light 
in the above by setting e = c = 1. We omit the more technical requirements on q , S ,  
etc as we only wish to remind the reader of the usual system studied. 

In stochastic mechanics as devised by Nelson (1985) and developed by Guerra 
and Morato (1983) one immediately comes across a problem in the definition of 
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a velocity or any derivative with respect to time. The central theme of stochastic 
mechanics is to model the position of the particle by use of a diffusion process. 
The paths of the process are continuous but not differentiable. Nelson developed a 
stochastic Newton equation while other authors developed a stochastic Lagrangian 
and variational principle approach. In this study we are going to use the Hamiltonian 
in order to model the motion of our particle. The study is structured as follows. We 
first develop a new derivation of the stochastic Lagrangian by addressing the question 
of measurement and secondly we present a new derivation of the Schrodinger equation 
by requiring the rate of change of energy to be the same as in classical mechanics. 

2. The stochastic Lagrangian 

Let our diffusion process have the It6 equation 

where v > 0 is the diffusion constant and B, is a Brownian motion on R 3 .  Let F, be 
the usual filtration generated by the sets { B ,  : U 5 s )  for s 5 t .  For suitable functions 
f (q, t )  we have the It6 equation 

df (qr ,  t )  = (g + b .  Vf + ;Af) dt + f i V f  . dB,. 

The reader might consult 0ksendal (1985) for a good introduction to stochastic pro- 
cesses and stochastic differential equations. In order to derive a stochastic Lagrangian 
we have to be able to accommodate the classical quantities q, q .  A and q . q. To calculate 
the stochastic analogues of these quantities we use the simple ideas of measurement 
and averaging. Classically we have 

The last of these expressions is the crucial one in what follows. We have to take 
expectations of our measured quantities with respect to the filtration F, in order to 
obtain well defined expressions. We proceed as below. The velocity is represented by 

and a quick use of Ita's equation for q,  shows that this is merely b(qr , r ) .  When one 
considers A . q one has a choice to make. Does one consider 

or 
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These two expressions are markedly different, the first being equal to 

whilst the second is equal to 

We simply take the average of these two expressions to obtain 

V 
b .  A +- -V , A .  

2 

The divergence term has arisen because of the nature of the It8 equation and is most 
often referred to as the It8 correction. The analogue for the third of our expressions 
can now be written down as we have done all the work required in the previous 
calculation. We replace 4 .  4 by 

the coefficient of the divergence being v not v / 2  since we have no choice in our order 
of measurement. The important feature of this analogous term for 4 . 4  is that is a 
nice geometric object and is well defined. If one refers to Nelson (1985) and follows 
his account of Guerra’s derivation of his analogue for 0 . 0  one observes that there 
is a singular term present, namely one of order (dt)-’. This term is ignored in the 
application of their variational principle. We must also point out that Guerra derives 
his expressions for motion in a manifold. Our methods may be applied to this most 
general problem in a similar way to that used herein (Davies 1989) and it is of interest 
to note that we do not obtain any curvature terms in the derivation of the stochastic 
Lagrangian. 

The general principle to be gleaned from the above is that one has correction 
terms dependent on the diffusion constant arising from classical quantities involving q. 
Finally we write our stochastic Lagrangian as 

m V 
L = - ( b . b + v V ’ b ) + A . b + - V . A -  V 

2 2 

which is equivalent to that used by previous authors. We emphasise that we have not 
made use of conditioning into the future or of backward drifts. 

3. The Schriidinger equation 

Having obtained the stochastic Lagrangian, the corresponding stochastic Hamiltonian 
can be written as 
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where p is some function of qt and t as yet to be determined. Let the diffusion process 
have a density p = exp(2R) where R is some real-valued scalar function of position 
and time. The density satisfies the differential equation 

dP V 
- = V *  (-Vp - bp) 
d t  2 

and setting b = vVR + U reduces this to the simpler form 

1 dR 
at 2 

= u * V R +  - V . U .  _ _  

We require that 

in analogy with the classical relationship 

. aV dA H = - - - . q  
a t  at 

where the expectation is defined in the usual way by 

We make some use of the identity 

dt 

obtained by an integration by parts argument for suitable p in the following. 
calculation we have 

By 

We have to choose U and p such that 

mu ab ap v ap 
2 at  at  2 at  

@ -  mb - A )  - -V. - + b .  - + - V .  - + u.VH 

Assuming that exp(2R) decays fast enough to ensure that we can integrate by parts 
and ignore boundary terms we transform the above into 

We simply choose mv = p - A and dp/d t  = -VH to give us the equality 
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Now observe that if we set p = mvVS for some real-valued scalar function S to ensure 
invariance of p we have 

dS 
at 

mu = mvVS - A  and mv- = -H. 

The partial differential equations for R and S are thus, after some tidying, 

- = (vVS - m-'A). VR + i V .  (vVS - m-'A) 
at  

as 1 mv2 
at  2m 2 -mv- = - ( m v V S - A ) . ( m v V S - A ) - - ( V R . V R + A R ) +  V 

If we now introduce y = exp(R + is) we combine these two equations to give 

av 1 imv - = - (imvV + A) . (imvV + A ) y  + V y .  
at 2m 

Note that this is just the Schrodinger equation with mv replacing h . 

4. Conclusion 

Given a classical dynamical system we have followed a route analogous to one classical 
approach in order to obtain a differential equation for the drift in the diffusion and 
have obtained the Schrodinger equation. Our straightforward approach to obtaining the 
stochastic Lagrangian does not depend on the use of backward drifts or conditioning 
into the future and results in a well defined geometric expression. This linear equation 
enables us to find those functions R and S which define the density p and drift b of 
the diffusion process. It is interesting to note that it is mv which arises naturally in 
our derivation of the Schrodinger equation. One could propose that the effect of the 
background noise as represented by the &dB, in the It8 equation for qr should be 
in some way inversely proportional to the mass of the particle and choosing v = h / m  
would be a convenient way of accommodating this. 
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